ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

ASCL Code Record

[submitted] CosmicEmu: High Precision Emulator for the Nonlinear Matter Power Spectrum

Modern cosmological surveys are delivering datasets characterized by unprecedented quality and statistical completeness. In order to maximally extract cosmological information from these observations, matching theoretical predictions are needed. In the nonlinear regime of structure formation, cosmological simulations are the primary means of obtaining the required information but the computational cost of sufficiently resolved large-volume simulations makes it prohibitive to run very large ensembles. Nevertheless, precision emulators built on a tractable number of high-quality simulations can be used to build very fast prediction schemes to enable a variety of cosmological inference studies. The "Mira-Titan Universe" simulation suite covers the standard six cosmological parameters and, in addition, includes massive neutrinos and a dynamical dark energy equation of state. It is based on 111 cosmological simulations, each covering a (2.1Gpc)^3 volume and evolving 3200^3 particles, and augments these higher-resolution simulations with an additional set of 1776 lower-resolution simulations and TimeRG perturbation theory results to cover scales straddling the linear to mildly nonlinear regimes. The emulator built on this suite, the CosmicEmu, provides predictions at the two to three percent level of accuracy over a wide range of cosmological parameters. Presented in: https://arxiv.org/abs/2207.12345.

Code site:
https://github.com/lanl/CosmicEmu

Views: 1849