GPU-D is a GPU-accelerated implementation of the inverse ray-shooting technique used to generate cosmological microlensing magnification maps. These maps approximate the source plane magnification patterns created by an ensemble of stellar-mass compact objects within a foreground macrolens galaxy. Unlike other implementations, GPU-D solves the gravitational lens equation without any approximation. Due to the high computational intensity and high degree of parallelization inherent in the algorithm, it is ideal for brute-force implementation on GPUs. GPU-D uses CUDA for GPU acceleration and require NVIDIA devices to run.