ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

ASCL Code Record

[ascl:1806.014] pile-up: Monte Carlo simulations of star-disk torques on hot Jupiters

The pile-up gnuplot script generates a Monte Carlo simulation with a selectable number of randomized drawings (1000 by default, ~1min on a modern laptop). For each realization, the script calculates the torque acting on a hot Jupiter around a young, solar-type star as a function of the star-planet distance. The total torque on the planet is composed of the disk torque in the type II migration regime (that is, the planet is assumed to have opened up a gap in the disk) and of the stellar tidal torque. The model has four free parameters, which are drawn from a normal or lognormal distribution: (1) the disk's gas surface density at 1 astronomical unit, (2) the magnitude of tidal dissipation within the star, (3) the disk's alpha viscosity parameter, and (4) and the mean molecular weight of the gas in the disk midplane. For each realization, the total torque is screened for a distance at which it becomes zero. If present, then this distance would represent a tidal migration barrier to the planet. In other words, the planet would stop migrating. This location is added to a histogram on top of the main torque-over-distance panel and the realization is counted as one case that contributes to the overall survival rate of hot Jupiters. Finally, the script generates an output file (PDF by default) and prints the hot Jupiter survival rate for the assumed parameterization of the star-planet-disk system.

Code site:
https://github.com/reneheller/pile-up/
Used in:
https://ui.adsabs.harvard.edu/abs/2019A%26A...628A..42H
Bibcode:
2018ascl.soft06014H

Views: 4144

ascl:1806.014
Add this shield to your page
Copy the above HTML to add this shield to your code's website.