ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Kim, Dae-Won'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1512.019] UPSILoN: AUtomated Classification of Periodic Variable Stars using MachIne LearNing

UPSILoN (AUtomated Classification of Periodic Variable Stars using MachIne LearNing) classifies periodic variable stars such as Delta Scuti stars, RR Lyraes, Cepheids, Type II Cepheids, eclipsing binaries, and long-period variables (i.e. superclasses), and their subclasses (e.g. RR Lyrae ab, c, d, and e types) using well-sampled light curves from any astronomical time-series surveys in optical bands regardless of their survey-specific characteristics such as color, magnitude, and sampling rate. UPSILoN consists of two parts, one which extracts variability features from a light curve, and another which classifies a light curve, and returns extracted features, a predicted class, and a class probability. In principle, UPSILoN can classify any light curves having arbitrary number of data points, but using light curves with more than ~80 data points provides the best classification quality.

[ascl:1605.009] ASTRiDE: Automated Streak Detection for Astronomical Images

ASTRiDE detects streaks in astronomical images using a "border" of each object (i.e. "boundary-tracing" or "contour-tracing") and their morphological parameters. Fast moving objects such as meteors, satellites, near-Earth objects (NEOs), or even cosmic rays can leave streak-like traces in the images; ASTRiDE can detect not only long streaks but also relatively short or curved streaks.

[ascl:1605.008] PDT: Photometric DeTrending Algorithm Using Machine Learning

PDT removes systematic trends in light curves. It finds clusters of light curves that are highly correlated using machine learning, constructs one master trend per cluster and detrends an individual light curve using the constructed master trends by minimizing residuals while constraining coefficients to be positive.

[submitted] AntabGMVA: A Python tool for managing GMVA metadata

Global mm-VLBI Array (GMVA) observations are accompanied by a lot of metadata (i.e., the so-called 'ANTAB' files) that contain the system temperature (Tsys) and the gain values of the individual GMVA antennas. These data are required for the amplitude calibration of GMVA data which is an essential part in the data reduction. Unfortunately, Tsys measurements in the ANTAB files are not perfect and there are almost always erroneous values in some of the ANTAB files (particularly in the VLBA data). This could lead to incorrect results in the amplitude calibration and thus need to be corrected with proper data inspection/treatment. However, every GMVA station provides the ANTAB file in their own data format which makes the examination tricky. AntabGMVA was designed to resolve these issues and allows GMVA users to manage the GMVA ANTAB files easily and efficiently. Using AntabGMVA, one can perform extraction/inspection/visualization/correction of the Tsys data from the ANTAB files and finally generate one single ANTAB file which includes all the final products.