➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
Lenstronomy is a multi-purpose open-source gravitational lens modeling python package. Lenstronomy reconstructs the lens mass and surface brightness distributions of strong lensing systems using forward modelling and supports a wide range of analytic lens and light models in arbitrary combination. The software is also able to reconstruct complex extended sources as well as point sources. Lenstronomy is flexible and numerically accurate, with a clear user interface that could be deployed across different platforms. Lenstronomy has been used to derive constraints on dark matter properties in strong lenses, measure the expansion history of the universe with time-delay cosmography, measure cosmic shear with Einstein rings, and decompose quasar and host galaxy light.
hierArc hierarchically infers strong lensing mass density profiles and the cosmological parameters, in particular the Hubble constant. The software supports lenses with imaging data and kinematics, and optionally time delays. The kinematics modeling is performed in conjunction with lenstronomy (ascl:1804.012).
SkyPy simulates the astrophysical sky. It provides functions that sample realizations of sources and their associated properties from probability distributions. Simulation pipelines are constructed from these models, while task scheduling and data dependencies are handled internally. The package's modular design, containing a library of physical and empirical models across a range of observables and a command line script to run end-to-end simulations, allows users to interface with external software.
deeplenstronomy simulates large datasets for applying deep learning to strong gravitational lensing. It wraps the functionalities of lenstronomy (ascl:1804.012) in a convenient yaml-style interface to generate training datasets. The code can use built-in astronomical surveys, realistic galaxy colors, real images of galaxies, and physically motivated distributions of all parameters to train the neural network to create a simulated dataset.
GaLight (Galaxy shapes of Light) performs two-dimensional model fitting of optical and near-infrared images to characterize the light distribution of galaxies with components including a disk, bulge, bar and quasar. Light is decomposes into PSF and Sersic, and the fitting is based on lenstronomy (ascl:1804.01). GaLight's automated features including searching PSF stars in the FOV, automatically estimating the background noise level, and cutting out the target object galaxies (QSOs) and preparing the materials to model the data. It can also detect objects in the cutout stamp and quickly create Sersic keywords to model them, and model QSOs and galaxies using 2D Sersic profile and scaled point source.
PSFr empirically reconstructs an oversampled version of the point spread function (PSF) from astronomical imaging observations. The code provides a light-weighted API of a refined version of an algorithm originally implemented in lenstronomy (ascl:1804.012). It provides user support with different artifacts in the data and supports the masking of pixels, or the treatment of saturation levels. PSFr has been used to reconstruct the PSF from multiply imaged lensed quasar images observed by the Hubble Space Telescope in a crowded lensing environment and more recently with James Webb Space Telescope (JWST) imaging data for a wide dynamical flux range.
paltas conducts simulation-based inference on strong gravitational lensing images. It builds on lenstronomy (ascl:1804.012) to create large datasets of strong lensing images with realistic low-mass halos, Hubble Space Telescope (HST) observational effects, and galaxy light from HST's COSMOS field. paltas also includes the capability to easily train neural posterior estimators of the parameters of the lensing system and to run hierarchical inference on test populations.
ovejero conducts hierarchical inference of strongly-lensed systems with Bayesian neural networks. It requires lenstronomy (ascl:1804.012) and fastell (ascl:9910.003) to run lens models with elliptical mass distributions. The code trains Bayesian Neural Networks (BNNs) to predict posteriors on strong gravitational lensing images and can integrate with forward modeling tools in lenstronomy to allow comparison between BNN outputs and more traditional methods. ovejero also provides hierarchical inference tools to generate population parameter estimates and unbiased posteriors on independent test sets.
baobab generates images of strongly-lensed systems, given some configurable prior distributions over the parameters of the lens and light profiles as well as configurable assumptions about the instrument and observation conditions. Wrapped around lenstronomy (ascl:1804.012), baobab supports prior distributions ranging from artificially simple to empirical. A major use case for baobab is the generation of training and test sets for hierarchical inference using Bayesian neural networks (BNNs); the code can generate the training and test sets using different priors.