➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
TEA (Thermal Equilibrium Abundances) calculates gaseous molecular abundances under thermochemical equilibrium conditions. Given a single T,P point or a list of T,P pairs (the thermal profile of an atmosphere) and elemental abundances, TEA calculates mole fractions of the desired molecular species. TEA uses 84 elemental species and thermodynamical data for more then 600 gaseous molecular species, and can adopt any initial elemental abundances.
BART implements a Bayesian, Monte Carlo-driven, radiative-transfer scheme for extracting parameters from spectra of planetary atmospheres. BART combines a thermochemical-equilibrium code, a one-dimensional line-by-line radiative-transfer code, and the Multi-core Markov-chain Monte Carlo statistical module to constrain the atmospheric temperature and chemical-abundance profiles of exoplanets.
Transit calculates the transmission or emission spectrum of a planetary atmosphere with application to extrasolar-planet transit and eclipse observations, respectively. It computes the spectra by solving the one-dimensional line-by-line radiative-transfer equation for an atmospheric model.
rate computes thermochemical-equilibrium abundances for a H-C-N-O system with known pressure, temperature, and elemental abundances. The output abundances are H2O, CH4, CO, CO2, NH3, C2H2, C2H4, HCN, and N2, H2, H, and He.
Pyrat Bay computes radiative-transfer spectra and fits exoplanet atmospheric properties, and is an efficient, user-friendly Python tool. The package offers transmission or emission spectra of exoplanet transit or eclipses respectively and forward-model or retrieval calculations. The radiative-transfer includes opacity sources from line-by-line molecular absorption, collision-induced absorption, Rayleigh scattering absorption, and more, including Gray aerosol opacities. Pyrat Bay's Bayesian (MCMC) posterior sampling of atmospheric parameters includes molecular abundances, temperature profile, pressure-radius, and Rayleigh and cloud properties.