➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
We consider the problem of fitting a parametric model to time-series data that are afflicted by correlated noise. The noise is represented by a sum of two stationary Gaussian processes: one that is uncorrelated in time, and another that has a power spectral density varying as $1/f^gamma$. We present an accurate and fast [O(N)] algorithm for parameter estimation based on computing the likelihood in a wavelet basis. The method is illustrated and tested using simulated time-series photometry of exoplanetary transits, with particular attention to estimating the midtransit time. We compare our method to two other methods that have been used in the literature, the time-averaging method and the residual-permutation method. For noise processes that obey our assumptions, the algorithm presented here gives more accurate results for midtransit times and truer estimates of their uncertainties.
QATS detects transiting extrasolar planets in time-series photometry. It relaxes the usual assumption of strictly periodic transits by permitting a variable, but bounded, interval between successive transits.
Photodynam facilitates so-called "photometric-dynamical" modeling. This model is quite simple and this is reflected in the code base. A N-body code provides coordinates and the photometric code produces light curves based on coordinates.