ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Coughlin, Jeff'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1903.012] DAVE: Discovery And Vetting of K2 Exoplanets

DAVE implements a pipeline to find and vet planets planets using data from NASA's K2 mission. The pipeline contains several modules tailored to particular aspects of the vetting procedures, using photocenter analysis to rule out background eclipsing binaries and flux time-series analysis to rule out odd–even differences, secondary eclipses, low-S/N events, variability other than a transit, and size of the transiting object.

[ascl:1812.013] Lightkurve: Kepler and TESS time series analysis in Python

Lightkurve analyzes astronomical flux time series data, in particular the pixels and light curves obtained by NASA’s Kepler, K2, and TESS exoplanet missions. This community-developed Python package is designed to be user friendly to lower the barrier for students, astronomers, and citizen scientists interested in analyzing data from these missions. Lightkurve provides easy tools to download, inspect, and analyze time series data and its documentation is supported by a large syllabus of tutorials.

[ascl:2012.006] Robovetter: Automatic vetting of Threshold Crossing Events (TCEs)

The DR25 Kepler Robovetter is a robotic decision-making code that dispositions each Threshold Crossing Event (TCE) from the final processing (DR 25) of the Kepler data into Planet Candidates (PCs) and False Positives (FPs). The Robovetter provides four major flags to designate each FP TCE as Not Transit-Like (NTL), a Stellar Eclipse (SS), a Centroid Offset (CO), and/or an Ephemeris Match (EM). It produces a score ranging from 0.0 to 1.0 that indicates the Robovetter's disposition confidence, where 1.0 indicates strong confidence in PC, and 0.0 indicates strong confidence in FP. Finally, the Robovetter provides comments in a text string that indicate the specific tests each FP TCE fails and provides supplemental information on all TCEs as necessary.

[ascl:2101.008] EphemMatch: Ephemeris matching of DR25 TCEs, KOIs, and EBs for false positive identification

EphemMatch reads in the period, epoch, positional, and other information of all the Kepler DR25 TCEs, as well as the cumulative KOI list, and lists of EBs from the Kepler Eclipsing Binary Working Group (http://keplerebs.villanova.edu) as well as several catalogs of EBs known from ground-based surveys. The code then performs matching to identify two different objects that have a statistically identical period and epoch (within some tolerance) and perform logic to identify which is the real source (the parent) and which is a false positive due to contamination from the parent (a child).

[ascl:2012.011] Skye: Excess clustering of transit times detection

Skye detects a statistically significant excess clustering of transit times, indicating that there are likely systematics at specific times that cause many false positive detections, for the Kepler DR25 planet candidate catalog. The technique could be used for any survey looking to statistically cull false alarms.