➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
PINTofALE was originally developed to analyze spectroscopic data from optically-thin coronal plasmas, though much of the software is sufficiently general to be of use in a much wider range of astrophysical data analyses. It is based on a modular set of IDL tools that interact with an atomic database and with observational data. The tools are designed to allow easy identification of spectral features, measure line fluxes, and carry out detailed modeling. The basic philosophy of the package is to provide access to the innards of atomic line databases, and to have flexible tools to interactively compare with the observed data. It is motivated by the large amount of book-keeping, computation and iterative interaction that is required between the researcher and observational and theoretical data in order to derive astrophysical results. The tools link together transparently and automatically the processes of spectral "browsing", feature identification, measurement, and computation and derivation of results. Unlike standard modeling and fitting engines currently in use, PINTofALE opens up the "black box" of atomic data required for UV/X-ray analyses and allows the user full control over the data that are used in any given analysis.
StelNet predicts mass and age from absolute luminosity and effective temperature for stars with close to solar metallicity. It uses a Deep Neural Network trained on stellar evolutionary tracks. The underlying model makes no assumption on the evolutionary stage and includes the pre-main sequence phase. A mix of models are trained and bootstrapped to quantify the uncertainty of the model, and data is through all trained models to provide a predictive distribution from which an expectation value and uncertainty level can be estimated.