➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
emcee is an extensible, pure-Python implementation of Goodman & Weare's Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler. It's designed for Bayesian parameter estimation. The algorithm behind emcee has several advantages over traditional MCMC sampling methods and has excellent performance as measured by the autocorrelation time (or function calls per independent sample). One advantage of the algorithm is that it requires hand-tuning of only 1 or 2 parameters compared to $sim N^2$ for a traditional algorithm in an N-dimensional parameter space. Exploiting the parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra effort.
exocartographer solves the exo-cartography inverse problem. This flexible forward-modeling framework, written in Python, retrieves the albedo map and spin geometry of a planet based on time-resolved photometry; it uses a Markov chain Monte Carlo method to extract albedo maps and planet spin and their uncertainties. Gaussian Processes use the data to fit for the characteristic length scale of the map and enforce smooth maps.
kombine is an ensemble sampler built for efficiently exploring multimodal distributions. By using estimates of ensemble’s instantaneous distribution as a proposal, it achieves very fast burnin, followed by sampling with very short autocorrelation times.
ptemcee, pronounced "tem-cee", is fork of Daniel Foreman-Mackey's emcee (ascl:1303.002) to implement parallel tempering more robustly. As far as possible, it is designed as a drop-in replacement for emcee. It is helpful for characterizing awkward, multi-modal probability distributions.
autoregressive-bbh-inference, written in Python, models the distributions of binary black hole masses, spins, and redshifts to identify physical features appearing in these distributions without the need for strongly-parametrized population models. This allows not only agnostic study of the “known unknowns” of the black hole population but also reveals the “unknown unknowns," the unexpected and impactful features that may otherwise be missed by the standard building-block method.