➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
HELIOS-K is an opacity calculator for exoplanetary atmospheres. It takes a line list as an input and computes the line shapes of an arbitrary number of spectral lines (~millions to billions). HELIOS-K is capable of computing 100,000 spectral lines in 1 second; it is written in CUDA, is optimized for graphics processing units (GPUs), and can be used with the HELIOS radiative transfer code (ascl:1807.009).
VULCAN describes gaseous chemistry from 500 to 2500 K using a reduced C-H-O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry, and can be used to examine the theoretical trends produced when the temperature-pressure profile and carbon-to-oxygen ratio are varied.
HELIOS, a radiative transfer code, is constructed for studying exoplanetary atmospheres. The model atmospheres of HELIOS are one-dimensional and plane-parallel, and the equation of radiative transfer is solved in the two-stream approximation with non-isotropic scattering. Though HELIOS can be used alone, the opacity calculator HELIOS-K (ascl:1503.004) can be used with it to provide the molecular opacities.
HELA performs atmospheric retrieval on exoplanet atmospheres using a Random Forest algorithm. The code has two stages: training (which includes testing), and predicting. It requires a training set that matches the format of the data to be analyzed, with the same number of points and a sample spectrum for each parameter. The number of trees used and the number of jobs are editable. The HELA package includes a training set and data as examples.