➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
DDS simulates scattered light and thermal reemission in arbitrary optically dust distributions with spherical, homogeneous grains where the dust parameters (optical properties, sublimation temperature, grain size) and SED of the illuminating/ heating radiative source can be arbitrarily defined. The code is optimized for studying circumstellar debris disks where large grains (i.e., with large size parameters) are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. The approach to calculate dust temperatures and dust reemission spectra is only valid in the optically thin regime. The validity of this constraint is verified for each model during the runtime of the code. The relative abundances of different grains can be arbitrarily chosen, but must be constant outside the dust sublimation region., i.e., the shape of the (arbitrary) radial dust density distribution outside the dust sublimation region is the same for all grain sizes and chemistries.