ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Hunt, Jason A. S.'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:2305.017] simple-m2m: Extensions to the standard M2M algorithm for full modeling of observational data

Made-to-measure (M2M) is a standard technique for modeling the dynamics of astrophysical systems in which the system is modeled with a set of N particles with weights that are slowly optimized to fit a set of constraints while integrating these particles forward in the gravitational potential. Simple-m2m extends this standard technique to allow parameters of the system other than the particle weights to be fit as well, including nuisance parameters that describe the observer's relation to the dynamical system (e.g., the inclination) or parameters describing an external potential.

[ascl:1908.010] SNAPDRAGONS: Stellar Numbers And Parameters Determined Routinely And Generated Observing N-body Systems

SNAPDRAGONS (Stellar Numbers And Parameters Determined Routinely And Generated Observing N-body Systems) is a simplified version of the population synthesis code Galaxia (ascl:1101.007), using a different process to generate the stellar catalog. It splits each N-body particle from the galaxy simulation into an appropriate number of stellar particles to create a mock catalog of observable stars from the N-body model. SNAPDRAGON uses the same isochrones and extinction map as Galaxia.

[ascl:2212.019] m2mcluster: Star clusters made-to-measure modeling

m2mcluster performs made-to-measure modeling of star clusters, and can fit target observations of a Galactic globular cluster's 3D density profile and individual kinematic properties, including proper motion velocity dispersion, and line of sight velocity dispersion. The code uses AMUSE (ascl:1107.007) to model the gravitational N-body evolution of the system between time steps; GalPy (ascl:1411.008) is also required.