ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Hurley, Jarrod'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1201.001] McScatter: Three-Body Scattering with Stellar Evolution

McScatter illustrates a method of combining stellar dynamics with stellar evolution. The method is intended for elaborate applications, especially the dynamical evolution of rich star clusters. The dynamics is based on binary scattering in a multi-mass field of stars with uniform density and velocity dispersion, using the scattering cross section of Giersz (MNRAS, 2001, 324, 218-30).

[ascl:1303.014] BSE: Binary Star Evolution

BSE is a rapid binary star evolution code. It can model circularization of eccentric orbits and synchronization of stellar rotation with the orbital motion owing to tidal interaction in detail. Angular momentum loss mechanisms, such as gravitational radiation and magnetic braking, are also modelled. Wind accretion, where the secondary may accrete some of the material lost from the primary in a wind, is allowed with the necessary adjustments made to the orbital parameters in the event of any mass variations. Mass transfer occurs if either star fills its Roche lobe and may proceed on a nuclear, thermal or dynamical time-scale. In the latter regime, the radius of the primary increases in response to mass-loss at a faster rate than the Roche-lobe of the star. Prescriptions to determine the type and rate of mass transfer, the response of the secondary to accretion and the outcome of any merger events are in place in BSE.

[ascl:1303.015] SSE: Single Star Evolution

SSE is a rapid single-star evolution (SSE) code; these analytical formulae cover all phases of evolution from the zero-age main-sequence up to and including remnant phases. It is valid for masses in the range 0.1-100 Msun and metallicity can be varied. The SSE package contains a prescription for mass loss by stellar winds. It also follows the evolution of rotational angular momentum for the star.