➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
CUBEP3M is a high performance cosmological N-body code which has many utilities and extensions, including a runtime halo finder, a non-Gaussian initial conditions generator, a tuneable accuracy, and a system of unique particle identification. CUBEP3M is fast, has a memory imprint up to three times lower than other widely used N-body codes, and has been run on up to 20,000 cores, achieving close to ideal weak scaling even at this problem size. It is well suited and has already been used for a broad number of science applications that require either large samples of non-linear realizations or very large dark matter N-body simulations, including cosmological reionization, baryonic acoustic oscillations, weak lensing or non-Gaussian statistics.
C2-Ray3Dm1D_Helium is the hydrogen + helium version of the radiative transfer photo-ionization code C2-Ray. It combines the 1D and 3D versions of the code.
pyC2Ray updates C2-Ray (ascl:2312.022), an astrophysical radiative transfer code used to simulate the Epoch of Reionization (EoR). pyC2Ray includes a new raytracing method, ASORA, developed for GPUs, and provides a Python interface for customizable use of the code. The core features of C2-Ray, written in Fortran90, are wrapped using f2py as a Python extension module, while the raytracing library ASORA is implemented in C++ using CUDA. Both are native Python C-extensions and can be directly accessed from any Python script.
SubgridClumping derives the parameters for the global, in-homogeneous and stochastic clumping model and then computes the clumping factor for large low-resolution N-body simulations smoothed on a regular grid. Written for the CUBEP3M simulation, the package contains two main modules. The first derives the three clumping model parameters for a given small high-resolution simulation; the second computes a clumping factor cube (same mesh-size as input) for the three models for the given density field of a large low-resolution simulation.
C2-Ray calculates spherical symmetric time-dependent photo-ionization in 1D with the source at the origin for hydrogen only. The code is explicitly photon-conserving and uses an analytical relaxation solution for the ionization rate equations for each time step, thus enabling integration of the equation of transfer along a ray with fewer cells and time steps than previous methods. It is suitable for coupling radiative transfer to gas and N-body dynamics methods on fixed or adaptive grids. C2-Ray is not parallelized but contains an MPI module for compatibility with the 3D version (C2-Ray3Dm).
C2-Ray3Dm performs time-dependent photo-ionization calculations for 3D multiple sources, and for hydrogen only. Based on C2-Ray (ascl:2312.022), it runs under both MPI and OpenMP. The length of subroutines has been reduced to make the code more manageable and easier to read.