➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
CuspCore describes the formation of flat cores in dark matter haloes and ultra-diffuse galaxies from feedback-driven outflow episodes. The halo response is divided into an instantaneous change of potential at constant velocities followed by an energy-conserving relaxation. The core assumption of the model is that the total energy E=U+K is conserved for each shell enclosing a given dark matter mass, which is treated in the code as a least-square minimization of the difference between the final and the initial energy of each shell.
The SIDM model combines the isothermal Jeans model and the model of adiabatic halo contraction into a simple semi-analytic procedure for computing the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies. It agrees well with cosmological SIDM simulations over the entire core-forming stage and up to the onset of gravothermal core-collapse. The fast speed of the method facilitates analyses that would be challenging for numerical simulations.
SatGen generates satellite-galaxy populations for host halos of desired mass and redshift. It combines halo merger trees, empirical relations for galaxy-halo connection, and analytic prescriptions for tidal effects, dynamical friction, and ram-pressure stripping. It emulates zoom-in cosmological hydrosimulations in certain ways and outperforms simulations regarding statistical power and numerical resolution.