➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
EVEREST (EPIC Variability Extraction and Removal for Exoplanet Science Targets) removes instrumental noise from light curves with pixel level decorrelation and Gaussian processes. The code, written in Python, generates the EVEREST catalog and offers tools for accessing and interacting with the de-trended light curves. EVEREST exploits correlations across the pixels on the CCD to remove systematics introduced by the spacecraft’s pointing error. For K2, it yields light curves with precision comparable to that of the original Kepler mission. Interaction with the EVEREST catalog catalog is available via the command line and through the Python interface. Though written for K2, EVEREST can be applied to additional surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets.
STARRY computes light curves for various applications in astronomy: transits and secondary eclipses of exoplanets, light curves of eclipsing binaries, rotational phase curves of exoplanets, light curves of planet-planet and planet-moon occultations, and more. By modeling celestial body surface maps as sums of spherical harmonics, STARRY does all this analytically and is therefore fast, stable, and differentiable. Coded in C++ but wrapped in Python, STARRY is easy to install and use.
VPLanet (Virtual Planetary Laboratory) simulates planetary system evolution with a focus on habitability. Physical models, typically consisting of ordinary differential equations for stellar, orbital, tidal, rotational, atmospheric, internal, magnetic, climate, and galactic evolution, are coupled together to simulate evolution for the age of a system.
eleanor extracts target pixel files from TESS Full Frame Images and produces systematics-corrected light curves for any star observed by the TESS mission. eleanor takes a TIC ID, a Gaia source ID, or (RA, Dec) coordinates of a star observed by TESS and returns, as a single object, a light curve and accompanying target pixel data. The process can be customized, allowing, for example, examination of intermediate data products and changing the aperture used for light curve extraction. eleanor also offers tools that make it easier to work with stars observed in multiple TESS sectors.
planetplanet models exoplanet transits, secondary eclipses, phase curves, and exomoons, as well as eclipsing binaries, circumbinary planets, and more. The code was originally developed to model planet-planet occultation (PPO) light curves for the TRAPPIST-1 system, but it is generally applicable to any exoplanet system. During a PPO, a planet occults (transits) the disk of another planet in the same planetary system, blocking its thermal (and reflected) light, which can be measured photometrically by a distant observer. planetplanet is coded in C and wrapped in a user-friendly Python interface.
wobble analyzes time-series spectra. It was designed with stabilized extreme precision radial velocity (EPRV) spectrographs in mind, but is highly flexible and extensible to a variety of applications. It takes a data-driven approach to deriving radial velocities and requires no a priori knowledge of the stellar spectrum or telluric features.
starry_process implements an interpretable Gaussian process (GP) for modeling stellar light curves. The code's hyperparameters are physically interpretable, and include the radius of the spots, the mean and variance of the latitude distribution, the spot contrast, and the number of spots, among others. The rotational period of the star, the limb darkening parameters, and the inclination (or marginalize over the inclination if it is not known) can also be specified.