ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Masters, Karen'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1302.014] SYNMAG Photometry: Catalog-level Matched Colors of Extended Sources

SYNMAG is a tool for producing synthetic aperture magnitudes to enable fast matched photometry at the catalog level without reprocessing imaging data. Aperture magnitudes are the most widely tabulated flux measurements in survey catalogs; obtaining reliable, matched photometry for galaxies imaged by different observatories represents a key challenge in the era of wide-field surveys spanning more than several hundred square degrees. Methods such as flux fitting, profile fitting, and PSF homogenization followed by matched-aperture photometry are all computationally expensive. An alternative solution called "synthetic aperture photometry" exploits galaxy profile fits in one band to efficiently model the observed, point-spread-function-convolved light profile in other bands and predict the flux in arbitrarily sized apertures.

[ascl:2106.005] Marvin: Data access and visualization for MaNGA

Marvin searches, accesses, and visualizes data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. Written in Python, it provides tools for easy efficient interaction with the MaNGA data via local files, files retrieved from the Science Archive Server, or data directly grabbed from the database. The tools come mainly in the form of convenience functions and classes for interacting with the data. Also available is a web app, Marvin-web, offers an easily accessible interface for searching the MaNGA data and visual exploration of individual MaNGA galaxies or of the entire sample, and a powerful query functionality that uses the API to query the MaNGA databases and return the search results to your python session. Marvin-API is the critical link that allows Marvin-tools and Marvin-web to interact with the databases, which enables users to harness the statistical power of the MaNGA data set.

[ascl:2203.016] MaNGA-DRP: MaNGA Data Reduction Pipeline

The MaNGA Data Reduction Pipeline (DRP) processes the raw data to produce flux calibrated, sky subtracted, coadded data cubes from each of the individual exposures for a given galaxy. The DRP consists of two primary parts: the 2d stage that produces flux calibrated fiber spectra from raw individual exposures, and the 3d stage that combines multiple flux calibrated exposures with astrometric information to produce stacked data cubes. These science-grade data cubes are then processed by the MaNGA Data Analysis Pipeline (ascl:2203.017), which measures the shape and location of various spectral features, fits stellar population models, and performs a variety of other analyses necessary to derive astrophysically meaningful quantities from the calibrated data cubes.

[ascl:2203.017] MaNGA-DAP: MaNGA Data Analysis Pipeline

The MaNGA data analysis pipeline (MaNGA DAP) analyzes the data produced by the MaNGA data-reduction pipeline (ascl:2203.016) to produced physical properties derived from the MaNGA spectroscopy. All survey-provided properties are currently derived from the log-linear binned datacubes (i.e., the LOGCUBE files).

[ascl:2203.027] Zoobot: Deep learning galaxy morphology classifier

Zoobot classifies galaxy morphology with Bayesian CNN. Deep learning models were trained on volunteer classifications; these models were able to both learn from uncertain volunteer responses and predict full posteriors (rather than point estimates) for what volunteers would have said. The code reproduces and improves Galaxy Zoo DECaLS automated classifications, and can be finetuned for new tasks.