ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Osłowski, Stefan'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1806.005] Indri: Pulsar population synthesis toolset

Indri models the population of single (not in binary or hierarchical systems) neutron stars. Given a starting distribution of parameters (birth place, velocity, magnetic field, and period), the code moves a set of stars through the time (by evolving spin period and magnetic field) and the space (by propagating through the Galactic potential). Upon completion of the evolution, a set of observables is computed (radio flux, position, dispersion measure) and compared with a radio survey such as the Parkes Multibeam Survey. The models' parameters are optimised by using the Markov Chain Monte Carlo technique.

[ascl:2110.003] PSRDADA: Distributed Acquisition and Data Analysis for Radio Astronomy

PSRDADA supports the development of distributed data acquisition and analysis systems; it provides a flexible and well-managed ring buffer in shared memory with a variety of applications for piping data from device to ring buffer and from ring buffer to device. PSRDADA allows more than one data set to be queued in the ring buffer at one time, and data may be recorded in selected bursts using data validity flags. A variety of clients have been implemented that can write data to the ring buffer and read data from it. The primary write clients can be controlled via a simple, text-based socket interface, and read client software exists for writing data to an array of disks, sending data to an array of nodes, or processing the data directly from RAM. At the highest level of control and configuration, scripts launch the PSRDADA configuration across all nodes in the cluster, monitor all relevant processes, configure and control through a web-based interface, interface with observatory scheduling tools, and manage the ownership and archival of project data. It has been used in the implementation of baseband recording and processing instrumentation for radio pulsar astronomy.

[ascl:2211.015] H-FISTA: Phase retrieval for pulsar spectroscopy

H-FISTA (Hierarchical Fast Iterative Shrinkage Thresholding Algorithm) retrieves the phases of the wavefield from intensity measurements for pulsar spectroscopy. The code accepts input data in ASCII format as produced by PSRchive's (ascl:1105.014) psrflux function, a FITS file, or a pickle. If using a notebook, any custom reader can be used as long as the data ends up in a NumPy array. H-FISTA obtains sparse models of the wavefield in a hierarchical approach with progressively increasing depth. Once the tail of the noise distribution is reached, the hierarchy terminates with a final unregularized optimization, resulting in a fully dense model of the complex wavefield that permits the discovery of faint signals by appropriate averaging.