➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
XDQSO, written in IDL, calculates photometric quasar probabilities to mimick SDSS-III’s BOSS quasar target selection or photometric redshifts for quasars, whether in three redshift ranges (z < 2.2; 2.2 leq z leq 3.5; z > 3.5) or arbitrary redshift ranges.
ATV displays and analyses astronomical images using the IDL image-processing language. It allows interactive control of the image scaling, color table, color stretch, and zoom, with support for world coordinate systems. It also does point-and-click aperture photometry, simple spectral extractions, and can produce publication-quality postscript output images.
MLC_EPGs classifies intermediate redshift (z = 0.3–0.8) emission line galaxies as star-forming galaxies, composite galaxies, active galactic nuclei (AGN), or low-ionization nuclear emission regions (LINERs). It uses four supervised machine learning classification algorithms: k-nearest neighbors (KNN), support vector classifier (SVC), random forest (RF), and a multi-layer perceptron (MLP) neural network. For input features, it uses properties that can be measured from optical galaxy spectra out to z < 0.8—[O III]/Hβ, [O II]/Hβ, [O III] line width, and stellar velocity dispersion—and four colors (u−g, g−r, r−i, and i−z) corrected to z = 0.1.
The MaNGA Data Reduction Pipeline (DRP) processes the raw data to produce flux calibrated, sky subtracted, coadded data cubes from each of the individual exposures for a given galaxy. The DRP consists of two primary parts: the 2d stage that produces flux calibrated fiber spectra from raw individual exposures, and the 3d stage that combines multiple flux calibrated exposures with astrometric information to produce stacked data cubes. These science-grade data cubes are then processed by the MaNGA Data Analysis Pipeline (ascl:2203.017), which measures the shape and location of various spectral features, fits stellar population models, and performs a variety of other analyses necessary to derive astrophysically meaningful quantities from the calibrated data cubes.
desitarget selects targets for spectroscopic follow-up by Dark Energy Spectroscopic Instrument (DESI). The pipeline uses bitmasks to record that a specific source has been selected by a particular targeting algorithm, setting bit-values in output data files in a number of different columns that indicate whether a particular target meets specific selection criteria. desitarget also outputs a unique TARGETID that allows each target to be tracked throughout the DESI survey. This TARGETID encodes information about each DESI target, such as the catalog the target was selected from, whether a target is a sky location or part of a random catalog, and whether a target is part of a secondary program.