ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Ucci, Graziano'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1912.012] GAME: GAlaxy Machine learning for Emission lines

GAME infers different ISM physical properties by analyzing the emission line intensities in a galaxy spectrum. The code is trained with a large library of synthetic spectra spanning many different ISM phases, including HII (ionized) regions, PDRs, and neutral regions. GAME is based on a Supervised Machine Learning algorithm called AdaBoost with Decision Trees as base learner. Given a set of input lines in a spectrum, the code performs a training on the library and then evaluates the line intensities to give a determination of the physical properties. The errors on the input emission line intensities and the uncertainties on the physical properties determinations are also taken into account. GAME infers gas density, column density, far-ultraviolet (FUV, 6–13.6 eV) flux, ionization parameter, metallicity, escape fraction, and visual extinction. A web interface for using the code is available.

[ascl:2004.006] ASTRAEUS: Semi-analytical semi-numerical galaxy evolution and reionization code

ASTRAEUS (semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in n-body dArk mattEr simUlationS) self-consistently derives the evolution of galaxies and the reionization of the IGM based on the merger trees and density fields of a DM-only N-body simulation. It models gas accretion, star formation, SN feedback, the time and spatial evolution of the ionized regions, accounting for recombinations, HI fractions and photoionization rates within ionized regions, and radiative feedback. ASTRAEUS is for studying the galaxy-reionization interplay in the first billion years. The underlying code is written in C and is MPI-parallelized; its modular design allows new physical processes and galaxy properties to be added easily. ASTRAEUS can be run on a tree-branch-by-tree-branch basis (i.e., fully vertical) or on a redshift-by-redshift basis (i.e., fully horizontal) when evolving the galaxies by using local horizontal merger trees.

[ascl:2107.023] cosmic_variance: Cosmic variance calculator

cosmic_variance calculates the cosmic variance during the Epoch of Reionization (EoR) for the UV Luminosity Function (UV LF), Stellar Mass Function (SMF), and Halo Mass Function (HMF). The three functions in the package provide the output as the cosmic variance expressed in percentage. The code is written in Python, and simple examples that show how to use the functions are provided.