ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Bartlett, Deaglan J.'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:2403.011] LtU-ILI: Robust machine learning in astro

LtU-ILI (Learning the Universe Implicit Likelihood Inference) performs machine learning parameter inference. Given labeled training data or a stochastic simulator, the LtU-ILI piepline automatically trains state-of-the-art neural networks to learn the data-parameter relationship and produces robust, well-calibrated posterior inference. The package comes with a wide range of customizable complexity, including posterior-, likelihood-, and ratio-estimation methods for ILI, including sequential learning analogs, and various neural density estimators, including mixture density networks, conditional normalizing flows, and ResNet-like ratio classifiers. It offers fully-customizable, exotic embedding networks, including CNNs and Graph Neural Networks, and a unified interface for multiple ILI backends such as sbi, pydelfi, and lampe. LtU-ILI also handles multiple marginal and multivariate posterior coverage metrics, and offers Jupyter and command-line interfaces and a parallelizable configuration framework for efficient hyperparameter tuning and production runs.

[ascl:2409.014] symbolic_pofk: Precise symbolic emulators of the linear and nonlinear matter power spectrum

symbolic_pofk provides simple Python functions and a Fortran90 routine for precise symbolic emulations of the linear and non-linear matter power spectra and for the conversion σ 8 ↔ A s as a function of cosmology. These can be easily copied, pasted, and modified to other languages. Outside of a tested k range, the fit includes baryons by default; however, this can be switched off.