➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
CUTE (Correlation Utilities and Two-point Estimation) extracts any two-point statistic from enormous datasets with hundreds of millions of objects, such as large galaxy surveys. The computational time grows with the square of the number of objects to be correlated; technology provides multiple means to massively parallelize this problem and CUTE is specifically designed for these kind of calculations. Two implementations are provided: one for execution on shared-memory machines using OpenMP and one that runs on graphical processing units (GPUs) using CUDA.
PySM generates full-sky simulations of Galactic foregrounds in intensity and polarization relevant for CMB experiments. The components simulated are thermal dust, synchrotron, AME, free-free, and CMB at a given Nside, with an option to integrate over a top hat bandpass, to add white instrument noise, and to smooth with a given beam. PySM is based on the large-scale Galactic part of Planck Sky Model code and uses some of its inputs.
The Core Cosmology Library (CCL) computes basic cosmological observables and provides predictions for many cosmological quantities, including distances, angular power spectra, correlation functions, halo bias and the halo mass function through state-of-the-art modeling prescriptions. Fiducial specifications for the expected galaxy distributions for the Large Synoptic Survey Telescope (LSST) are also included, together with the capability of computing redshift distributions for a user-defined photometric redshift model. Predictions for correlation functions of galaxy clustering, galaxy-galaxy lensing and cosmic shear are within a fraction of the expected statistical uncertainty of the observables for the models and in the range of scales of interest to LSST. CCL is written in C and has a python interface.
NaMaster computes full-sky angular cross-power spectra of masked, spin-0 and spin-2 fields with an arbitrary number of known contaminants using a pseudo-Cl (aka MASTER) approach. The code also implements E/B-mode purification and offers both full-sky and flat-sky modes. NaMaster is available as a C library, Python module, and standalone program.
CoLoRe (Cosmological Lofty Realization) generates fast mock realizations of a given galaxy sample using a lognormal model or LPT for the matter density. Tt can simulate a variety of cosmological tracers, including photometric and spectroscopic galaxies, weak lensing, and intensity mapping. CoLoRe is a parallel C code, and its behavior is controlled primarily by the input param file.
schNell computes basic map-level noise properties for generic networks of gravitational wave interferometers, primarily the noise power spectrum "N_ell", but this lightweight python module that can also be used for, for example, antenna patterns, overlap functions, and inverse variance maps, among other tasks. The code has three main classes; detectors contain information about each individual detector of the network, such as their positions, noise properties, and orientation. NoiseCorrelations describes the noise-level correlation between pairs of detectors, and the MapCalculators class combines a list of Detectors into a network (potentially together with a NoiseCorrelation object) and computes the corresponding map-level noise properties arising from their correlations.
CRIME (Cosmological Realizations for Intensity Mapping Experiments) generates mock realizations of intensity mapping observations of the neutral hydrogen distribution. It contains three separate tools, GetHI, ForGet, and JoinT. GetHI generates realizations of the temperature fluctuations due to the 21cm emission of neutral hydrogen. Optionally it can also generate a realization of the point-source continuum emission (for a given population) by sampling the same density distribution, though using this feature greatly affects performance. ForGet generates realizations of the different galactic and extra-galactic foregrounds relevant for intensity mapping experiments using some external datasets (e.g. the Haslam 408 MHz map) stored in the "data"folder. JoinT is provided for convenience; it joins the temperature maps generated by GetHI and ForGet and includes several instrument-dependent effects (in an overly simplistic way).
LyaCoLoRe uses CoLoRe (ascl:2111.009) simulations to generate simulated Lyman alpha forest spectra. The code takes the output files from CoLoRe as an input, carries out several stages of processing, and produces realistic skewers of transmitted flux fraction as an output. The repository includes tools to tune the parameters within LyaCoLoRe's transformation, and to measure the 1D power spectrum of output skewers quickly.
Nemo detects millimeter-wave Sunyaev-Zel'dovich galaxy clusters and compact sources. Originally developed for the Atacama Cosmology Telescope project, the code is capable of analyzing the next generation of deep, wide multifrequency millimeter-wave maps that will be produced by experiments such as the Simons Observatory. Nemo provides several modules for analyzing ACT/SO data in addition to the command-line programs provided in the package.
symbolic_pofk provides simple Python functions and a Fortran90 routine for precise symbolic emulations of the linear and non-linear matter power spectra and for the conversion σ 8 ↔ A s as a function of cosmology. These can be easily copied, pasted, and modified to other languages. Outside of a tested k range, the fit includes baryons by default; however, this can be switched off.