➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
D2O acts as a layer of abstraction between algorithm code and data-distribution logic to manage cluster-distributed multi-dimensional numerical arrays; this provides usability without losing numerical performance and scalability. D2O's global interface makes the cluster node's local data directly accessible for use in customized high-performance modules. D2O is written in Python; the code is portable and easy to use and modify. Expensive operations are carried out by dedicated external libraries like numpy and mpi4py and performance scales well when moving to an MPI cluster. In combination with NIFTy, D2O enables supercomputer based astronomical imaging via RESOLVE (ascl:1505.028) and D3PO (ascl:1504.018).
The galario library exploits the computing power of modern graphic cards (GPUs) to accelerate the comparison of model predictions to radio interferometer observations. It speeds up the computation of the synthetic visibilities given a model image (or an axisymmetric brightness profile) and their comparison to the observations.