ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Dullemond, C. P.'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1108.014] RADICAL: Multi-purpose 2-D Radiative Transfer Code

RADICAL is a multi-purpose 2-D radiative transfer code for axi-symmetric circumstellar (or circum-black-hole) envelopes /disks / tori etc. It has been extensively tested and found reliable and accurate. The code has recently been supplemented with a Variable Eddington Tensor module which enables it to solve dust continuum radiative transfer problems from very low up to extremely high optical depths with only a few (about 7) iterations at most.

[ascl:1108.015] DISKSTRUCT: A Simple 1+1-D Disk Structure Code

DISKSTRUCT is a simple 1+1-D code for modeling protoplanetary disks. It is not based on multidimensional radiative transfer! Instead, a flaring-angle recipe is used to compute the irradiation of the disk, while the disk vertical structure at each cylindrical radius is computed in a 1-D fashion; the models computed with this code are therefore approximate. Moreover, this model cannot deal with the dust inner rim.

In spite of these simplifications and drawbacks, the code can still be very useful for disk studies, for the following reasons:

  • It allows the disk structure to be studied in a 1-D vertical fashion (one radial cylinder at a time). For understanding the structure of disks, and also for using it as a basis of other models, this can be a great advantage.
  • For very optically thick disks this code is likely to be much faster than the RADMC full disk model.
  • Viscous internal heating of the disk is implemented and converges quickly, whereas the RADMC code is still having difficulty to deal with high optical depth combined with viscously generated internal heat.

[ascl:1108.016] RADMC: A 2-D Continuum Radiative Transfer Tool

RADMC is a 2-D Monte-Carlo code for dust continuum radiative transfer circumstellar disks and envelopes. It is based on the method of Bjorkman & Wood (ApJ 2001, 554, 615), but with several modifications to produce smoother results with fewer photon packages.

[ascl:1202.015] RADMC-3D: A multi-purpose radiative transfer tool

RADMC-3D is a software package for astrophysical radiative transfer calculations in arbitrary 1-D, 2-D or 3-D geometries. It is mainly written for continuum radiative transfer in dusty media, but also includes modules for gas line transfer and gas continuum transfer. RADMC-3D is a new incarnation of the older software package RADMC (ascl:1108.016).

[ascl:2207.023] MCFOST: Radiative transfer code

MCFOST is a 3D continuum and line radiative transfer code based on an hybrid Monte Carlo and ray-tracing method. It is mainly designed to study the circumstellar environment of young stellar objects, but has been used for a wide range of astrophysical problems. The calculations are done exactly within the limitations of the Monte Carlo noise and machine precision, i.e., no approximation are used in the calculations. The code has been strongly optimized for speed.

MCFOST is primarily designed to study protoplanetary disks. The code can reproduce most of the observations of disks, including SEDs, scattered light images, IR and mm visibilities, and atomic and molecular line maps. As the Monte Carlo method is generic, any complex structure can be handled by MCFOST and its use can be extended to other astrophysical objects. For instance, calculations have succesfully been performed on infalling envelopes and AGB stars. MCFOST also includes a non-LTE line transfer module, and NLTE level population are obtained via iterations between Monte Carlo radiative transfer calculations and statistical equilibrium.