➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
CAMELOT facilitates the comparison of observational data and simulations of molecular clouds and/or star-forming regions. The central component of CAMELOT is a database summarizing the properties of observational data and simulations in the literature through pertinent metadata. The core functionality allows users to upload metadata, search and visualize the contents of the database to find and match observations/simulations over any range of parameter space.
To bridge the fundamental disconnect between inherently 2D observational data and 3D simulations, the code uses key physical properties that, in principle, are straightforward for both observers and simulators to measure — the surface density (Sigma), velocity dispersion (sigma) and radius (R). By determining these in a self-consistent way for all entries in the database, it should be possible to make robust comparisons.
The chemistry and radiative cooling library Grackle provides options for primordial chemistry and cooling, photo-heating and photo-ionization from UV backgrounds, and support for user-provided arrays of volumetric and specific heating rates for astrophysical simulations and models. The library provides functions to update chemistry species; solve radiative cooling and update internal energy; and calculate cooling time, temperature, pressure, and ratio of specific heats (gamma), and has interfaces for C, C++, Fortran, and Python codes.
Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.
Warpfield (Winds And Radiation Pressure: Feedback Induced Expansion, colLapse and Dissolution) calculates shell dynamics and shell structure simultaneously for isolated massive clouds (≥105 M☉). This semi-analytic 1D feedback model scans a large range of physical parameters (gas density, star formation efficiency, and metallicity) to estimate escape fractions of ionizing radiation fesc, I, the minimum star formation efficiency ∊min required to drive an outflow, and recollapse time-scales for clouds that are not destroyed by feedback.
The PHANGS-ALMA pipeline process data from radio interferometer observations. It uses CASA (ascl:1107.013), AstroPy (ascl:1304.002), and other affiliated packages to process data from calibrated visibilities to science-ready spectral cubes and maps. The PHANGS-ALMA pipeline offers a flexible alternative to the scriptForImaging script distributed by ALMA. The pipeline runs in two separate software environments: CASA 5.6 or 5.7 (staging, imaging and post-processing) and Python 3.6 or later (derived products) with modern versions of several packages.