➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
The detection of cosmic ray hits (cosmics) in fiber-fed integral-field spectroscopy (IFS) data of single exposures is a challenging task because of the complex signal recorded by IFS instruments. Existing detection algorithms are commonly found to be unreliable in the case of IFS data, and the optimal parameter settings are usually unknown a priori for a given dataset. The Calar Alto legacy integral field area (CALIFA) survey generates hundreds of IFS datasets for which a reliable and robust detection algorithm for cosmics is required as an important part of the fully automatic CALIFA data reduction pipeline. PyCosmic combines the edge-detection algorithm of L.A.Cosmic with a point-spread function convolution scheme. PyCosmic is the only algorithm that achieves an acceptable detection performance for CALIFA data. Only for strongly undersampled IFS data does L.A.Cosmic exceed the performance of PyCosmic by a few percent. Thus, PyCosmic appears to be the most versatile cosmics detection algorithm for IFS data.
GIST (Galaxy IFU Spectroscopy Tool) provides a convenient all-in-one framework for the scientific analysis of fully reduced, (integral-field) spectroscopic data, conducting all the steps from the preparation of input data to the scientific analysis and to the production of publication-quality plots. In its basic set-up, the GIST pipeline extracts stellar kinematics, performs an emission-line analysis, and derives stellar population properties from full spectral fitting and via the measurement of absorption line-strength indices by exploiting pPXF (ascl:1210.002)and GandALF routines. The pipeline is not specific to any instrument or analysis technique, and includes a dedicated visualization routine with a sophisticated graphical user interface for fully interactive plotting of all measurements, spectra, fits, and residuals, as well as star formation histories and the weight distribution of the models.