➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
The detection of cosmic ray hits (cosmics) in fiber-fed integral-field spectroscopy (IFS) data of single exposures is a challenging task because of the complex signal recorded by IFS instruments. Existing detection algorithms are commonly found to be unreliable in the case of IFS data, and the optimal parameter settings are usually unknown a priori for a given dataset. The Calar Alto legacy integral field area (CALIFA) survey generates hundreds of IFS datasets for which a reliable and robust detection algorithm for cosmics is required as an important part of the fully automatic CALIFA data reduction pipeline. PyCosmic combines the edge-detection algorithm of L.A.Cosmic with a point-spread function convolution scheme. PyCosmic is the only algorithm that achieves an acceptable detection performance for CALIFA data. Only for strongly undersampled IFS data does L.A.Cosmic exceed the performance of PyCosmic by a few percent. Thus, PyCosmic appears to be the most versatile cosmics detection algorithm for IFS data.
Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.
pyHIIexplorerV2 extracts the integrated spectra of HII regions from integral field spectroscopy (IFS) datacubes. The detection of HII regions performed by pyHIIexplorer is based on two assumptions: 1) HII regions have strong emission lines that are clearly above the continuum emission and the average ionized gas emission across each galaxy, and 2) the typical size of HII regions is about a few hundreds of parsecs, which corresponds to a usual projected size of a few arcsec at the distance of our galaxies. These assumptions will define clumpy structures with a high Ha emission line contrast in comparison to the continuum. pyHIIexplorerV2 is written in Python; it is based on and is a successor to HIIexplorer (ascl:1603.017).