ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Kampert, Karl-Heinz'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:2208.016] CRPropa3: Simulation framework for propagating extraterrestrial ultra-high energy particles

CRPropa3, an improved version of CRPropa2 (ascl:1412.013), provides a simulation framework to study the propagation of ultra-high-energy nuclei up to iron on their voyage through an (extra)galactic environment. It takes into account pion production, photodisintegration, and energy losses by pair production of all relevant isotopes in the ambient low-energy photon fields, as well as nuclear decay. CRPropa3 can model the deflection in (inter)galactic magnetic fields, the propagation of secondary electromagnetic cascades, and neutrinos for a multitude of scenarios for different source distributions and magnetic environments. It enables the user to predict the spectra of UHECR (and of their secondaries), their composition and arrival direction distribution. Additionally, the low-energy Galactic propagation can be simulated by solving the transport equation using stochastic differential equations. CRPropa3 features a very flexible simulation setup with python steering and shared-memory parallelization.

[submitted] CRPropa 3.2

The landscape of high- and ultra-high-energy astrophysics has changed in the last decade, largely due to the inflow of data collected by large-scale cosmic-ray, gamma-ray, and neutrino observatories. At the dawn of the multimessenger era, the interpretation of these observations within a consistent framework is important to elucidate the open questions in this field. CRPropa 3.2 is a Monte Carlo code for simulating the propagation of high-energy particles in the Universe. This version represents a major leap forward, significantly expanding the simulation framework and opening up the possibility for many more astrophysical applications. This includes, among others: efficient simulation of high-energy particles in diffusion-dominated domains, self-consistent and fast modelling of electromagnetic cascades with an extended set of channels for photon production, and studies of cosmic-ray diffusion tensors based on updated coherent and turbulent magnetic-field models. Furthermore, several technical updates and improvements are introduced with the new version, such as: enhanced interpolation, targeted emission of sources, and a new propagation algorithm (Boris push). The detailed description of all novel features is accompanied by a discussion and a selected number of example applications.