Searching for codes credited to 'Thyagarajan, Nithyanandan'
➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
[ascl:1511.021]
EPIC: E-field Parallel Imaging Correlator
E-field Parallel Imaging Correlator (EPIC), a highly parallelized Object Oriented Python package, implements the Modular Optimal Frequency Fourier (MOFF) imaging technique. It also includes visibility-based imaging using the software holography technique and a simulator for generating electric fields from a sky model. EPIC can accept dual-polarization inputs and produce images of all four instrumental cross-polarizations.
[ascl:2312.030]
matvis: Fast matrix-based visibility simulator
Kittiwisit, Piyanat;
Murray, Steven G.;
Garsden, Hugh;
Bull, Philip;
Cain, Christopher;
Parsons, Aaron R.;
Sipple, Jackson;
Abdurashidova, Zara;
Adams, Tyrone;
Aguirre, James E.;
Alexander, Paul;
Ali, Zaki S.;
Baartman, Rushelle;
Balfour, Yanga;
Beardsley, Adam P.;
Berkhout, Lindsay M.;
Bernardi, Gianni;
Billings, Tashalee S.;
Bowman, Judd D.;
Bradley, Richard F.;
Burba, Jacob;
Carey, Steven;
Carilli, Chris L.;
Chen, Kai-Feng;
Cheng, Carina;
Choudhuri, Samir;
DeBoer, David R.;
de Lera Acedo, Eloy;
Dexter, Matt;
Dillon, Joshua S.;
Dynes, Scott;
Eksteen, Nico;
Ely, John;
Ewall-Wice, Aaron;
Fagnoni, Nicolas;
Fritz, Randall;
Furlanetto, Steven R.;
Gale-Sides, Kingsley;
Gehlot, Bharat Kumar;
Ghosh, Abhik;
Glendenning, Brian;
Gorce, Adelie;
Gorthi, Deepthi;
Greig, Bradley;
Grobbelaar, Jasper;
Halday, Ziyaad;
Hazelton, Bryna J.;
Hewitt, Jacqueline N.;
Hickish, Jack;
Huang, Tian;
Jacobs, Daniel C.;
Josaitis, Alec;
Julius, Austin;
Kariseb, MacCalvin;
Kern, Nicholas S.;
Kerrigan, Joshua;
Kim, Honggeun;
Kohn, Saul A.;
Kolopanis, Matthew;
Lanman, Adam;
La Plante, Paul;
Liu, Adrian;
Loots, Anita;
Ma, Yin-Zhe;
MacMahon, David H. E.;
Malan, Lourence;
Malgas, Cresshim;
Malgas, Keith;
Marero, Bradley;
Martinot, Zachary E.;
Mesinger, Andrei;
Molewa, Mathakane;
Morales, Miguel F.;
Mosiane, Tshegofalang;
Neben, Abraham R.;
Nikolic, Bojan;
Devi Nunhokee, Chuneeta;
Nuwegeld, Hans;
Pascua, Robert;
Patra, Nipanjana;
Pieterse, Samantha;
Qin, Yuxiang;
Rath, Eleanor;
Razavi-Ghods, Nima;
Riley, Daniel;
Robnett, James;
Rosie, Kathryn;
Santos, Mario G.;
Sims, Peter;
Singh, Saurabh;
Storer, Dara;
Swarts, Hilton;
Tan, Jianrong;
Thyagarajan, Nithyanandan;
van Wyngaarden, Pieter;
Williams, Peter K. G.;
Xu, Zhilei;
Zheng, Haoxuan
matvis simulates radio interferometric visibilities at the necessary scale with both CPU and GPU implementations. It is matrix-based and applicable to wide field-of-view instruments such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), as it does not make any approximations of the visibility integral (such as the flat-sky approximation). The only approximation made is that the sky is a collection of point sources, which is valid for sky models that intrinsically consist of point-sources, but is an approximation for diffuse sky models. The matvix matrix-based algorithm is fast and scales well to large numbers of antennas. The code supports both CPU and GPU implementations as drop-in replacements for each other and also supports both dense and sparse sky models.