➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
PyModelFit provides a pythonic, object-oriented framework that simplifies the task of designing numerical models to fit data. This is a very broad task, and hence the current functionality of PyModelFit focuses on the simpler tasks of 1D curve-fitting, including a GUI interface to simplify interactive work (using Enthought Traits). For more complicated modeling, PyModelFit also provides a wide range of classes and a framework to support more general model/data types (2D to Scalar, 3D to Scalar, 3D to 3D, and so on).
Astropysics is a library containing a variety of utilities and algorithms for reducing, analyzing, and visualizing astronomical data. Best of all, it encourages the user to leverage the existing capabilities of Python to make this quick, easy, and as painless as cutting-edge science can even actually be. There do exist other Python packages with some of the capabilities of this project, but the goal of this project is to integrate all these tools together and make them interact in the most straightforward ways possible.
Astropy provides a common framework, core package of code, and affiliated packages for astronomy in Python. Development is actively ongoing, with major packages such as PyFITS, PyWCS, vo, and asciitable already merged in. Astropy is intended to contain much of the core functionality and some common tools needed for performing astronomy and astrophysics with Python.
Ccdproc is an affiliated package for the AstroPy package for basic data reductions of CCD images. The ccdproc package provides many of the necessary tools for processing of ccd images built on a framework to provide error propagation and bad pixel tracking throughout the reduction process.
Halotools builds and tests models of the galaxy-halo connection and analyzes catalogs of dark matter halos. The core functions of the package include fast generation of synthetic galaxy populations using HODs, abundance matching, and related methods; efficient algorithms for calculating galaxy clustering, lensing, z-space distortions, and other astronomical statistics; a modular, object-oriented framework for designing galaxy evolution models; and end-to-end support for reducing halo catalogs and caching them as hdf5 files.
Photutils provides tools for detecting and performing photometry of astronomical sources. It can estimate the background and background rms in astronomical images, detect sources in astronomical images, estimate morphological parameters of those sources (e.g., centroid and shape parameters), and perform aperture and PSF photometry. Written in Python, it is an affiliated package of Astropy (ascl:1304.002).
Astroquery allows users to access online astronomical data from a wide range of sources; it is an Astropy-affiliated package. Each web service has its own sub-package for interfacing with a particular data source.
astroplan is a flexible toolbox for observation planning and scheduling. It is powered by Astropy (ascl:1304.002); it works for Python beginners and new observers, and is powerful enough for observatories preparing nightly and long-term schedules as well. It calculates rise/set/meridian transit times, alt/az positions for targets at observatories anywhere on Earth, and offers built-in plotting convenience functions for standard observation planning plots (airmass, parallactic angle, sky maps). It can also determine the observability of sets of targets given an arbitrary set of constraints (i.e., altitude, airmass, moon separation/illumination, etc.).
stginga customizes Ginga to aid data analysis for the data supported by STScI (e.g., HST or JWST). For instance, it provides plugins and configuration files that understand HST and JWST data products.
MIRaGe creates simulated exposures for NIRCam’s imaging and wide field slitless spectroscopy (WFSS) modes, NIRISS’s imaging, WFSS, and aperture masking interferometery (AMI) modes, and FGS’s imaging mode. It supports sidereal as well as non-sidereal tracking; for example, sources can be made to move across the field of view within an observation.
imexam performs simple image examination and plotting, with similar functionality to IRAF's (ascl:9911.002) imexamine. It is a lightweight library that enables users to explore data from a command line interface, through a Jupyter notebook, or through a Jupyter console. imexam can be used with multiple viewers, such as DS9 (scl:0003.002) or Ginga (ascl:1303.020), or without a viewer as a simple library to make plots and grab quick photometry information. It has been designed so that other viewers may be easily attached in the future.
PetroFit calculates Petrosian properties, such as radii and concentration indices; it also fits galaxy light profiles. The package, built on Photutils (ascl:1609.011), includes tools for performing accurate photometry, segmentations, Petrosian properties, and fitting.
Jdaviz provides data viewers and analysis plugins that can be flexibly combined as desired to create interactive applications. It offers Specviz (ascl:1902.011) for visualization and quick-look analysis of 1D astronomical spectra; Mosviz for visualization of astronomical spectra, including 1D and 2D spectra as well as contextual information, and Cubeviz for visualization of spectroscopic data cubes (such as those produced by JWST MIRI). Imviz, which provides visualization and quick-look analysis for 2D astronomical images, is also included. Jdaviz is designed with instrument modes from the James Webb Space Telescope (JWST) in mind, but the tool is flexible enough to read in data from many astronomical telescopes, and the documentation provides a complete table of all supported modes.
ndcube manipulates, inspects, and visualizes multi-dimensional contiguous and non-contiguous coordinate-aware data arrays. A sunpy (ascl:1401.010) affiliated package, it combines data, uncertainties, units, metadata, masking, and coordinate transformations into classes with unified slicing and generic coordinate transformations and plotting and animation capabilities. ndcube handles data of any number of dimensions and axis types (e.g., spatial, temporal, and spectral) whose relationship between the array elements and the real world can be described by World Coordinate System (WCS) translations.