➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
pyro is a simple python-based tutorial on computational methods for hydrodynamics. It includes 2-d solvers for advection, compressible, incompressible, and low Mach number hydrodynamics, diffusion, and multigrid. It is written with ease of understanding in mind. An extensive set of notes that is part of the Open Astrophysics Bookshelf project provides details of the algorithms.
The software framework AMReX is designed for building massively parallel block-structured adaptive mesh refinement (AMR) applications. Key features of AMReX include C++ and Fortran interfaces; 1-, 2- and 3-D support; and support for cell-centered, face-centered, edge-centered, and nodal data. The framework also supports hyperbolic, parabolic, and elliptic solves on hierarchical adaptive grid structure, optional subcycling in time for time-dependent PDEs, and parallelization via flat MPI, OpenMP, hybrid MPI/OpenMP, or MPI/MPI, and parallel I/O. AMReX supports the plotfile format with AmrVis, VisIt (ascl:1103.007), ParaView (ascl:1103.014), and yt (ascl:1011.022).
MAESTROeX solves the equations of low Mach number hydrodynamics for stratified atmospheres or stars with a general equation of state. It includes reactions and thermal diffusion and can be used on anything from a single core to 100,000s of processor cores with MPI + OpenMP. MAESTROeX maintains the accuracy of its predecessor MAESTRO (ascl:1010.044) while taking advantage of a simplified temporal integration scheme and leveraging the AMReX software framework for block-structured adaptive mesh refinement (AMR) applications.
pynucastro interfaces to the nuclear reaction rate databases, including the JINA Reaclib nuclear reactions database. This set of Python interfaces enables interactive exploration of rates and collection of rates (networks) in Jupyter notebooks and easy creation of the righthand side routines for reaction network integration (the ODEs) for use in simulation codes.